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Abstract

Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-
shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central
role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting
nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simu-
lations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the
existence of ‘‘stages’’, the dependence of oscillation frequency on the outflow velocity and the orifice–edge distance within one stage, the
pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The loca-
tion of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number
and the orifice–edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in
different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage con-
tinues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance
wavelength is also investigated. The development of higher harmonics of a single stage along the orifice–edge tip distance is presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The edge tone has been the subject of intensive research
for over one and a half centuries. For a review see for
example Rockwell and Naudascher (1979). The configura-
tion consists of a plane jet, and a wedge-shaped object
placed roughly opposite to the jet exit, traditionally called
the edge (Fig. 1). Despite its simplicity, the configuration
displays a remarkably complex behaviour. The jet oscillates
around the edge with a stable frequency and under certain
circumstances emits an audible tone. The configuration is
thought to be the central element of some wind instru-
ments. Other practical examples include the tongue of the
spiral casing in radial turbomachines and Y-shaped pipe
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branches. For our purposes, in addition, it plays the role
of a model aeroacoustic system in which we can demon-
strate that our algorithm for flow-induced sound simula-
tion works properly. The latter work will be presented
elsewhere.

The formation of the oscillation is attributed to a feed-
back loop (Powell, 1961): the oscillating jet creates a
dipole-type sound source on the wedge which initiates
infinitesimal disturbances at the jet exit – at low Mach
numbers with zero time delay. The disturbances grow
streamwise along the jet, providing the oscillating jet
motion and thus the oscillating force on the wedge surface
for the formation of the dipole. If either of v or h is changed
continuously, the frequency changes continuously within a
certain range but then at certain values the frequency sud-
denly jumps to another value and the qualitative appear-
ance of the flow also changes. These continuous regions
are called ‘‘stages’’ or ‘‘hydrodynamic modes’’. Fig. 2a, b
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Nomenclature

A velocity amplitude in Eq. (3) (m/s)
C constant in Eq. (1) (mn�1)
e accumulated error from temporal discretisation

(m/s)
F force acting on the wedge (N)
f frequency (Hz)
Df frequency resolution of spectra (Hz)
H1 length of the nozzle (mm)
H2 length of the wedge (mm)
h nozzle–wedge distance (mm)
M torque (Nmm)
N stage number in Eq. (2), number of time steps in

Eq. (3) (–)
n exponent in Eq. (1) (–)
Re Reynolds number (–)
St Strouhal number (–)
T total duration of simulation (s)
ud disturbance propagation velocity (m/s)

V1 notation in Fig. 2 (mm)
V2 notation in Fig. 2 (mm)
v mean inlet velocity (m/s)
xF distance of the point of force action from the

edge tip (mm)
a angle of the wedge (�)
d width of the slit of the nozzle (mm)
e fractional number in Eq. (2) (–)
k wavelength of the disturbance (mm)
l dynamic viscosity of air@25 �C (kg/ms)
m kinematic viscosity of air@25 �C (m2/s)
q density of air@25 �C (kg/m3)
s time step (s)

Subscripts and superscripts

x, y, z length coordinates
rms root mean square
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and c shows the qualitative appearance of the flow in the
1st, 2nd and 3rd stages, respectively. Electronic annex is
attached to this paper; there spectacular animations show
the various stages in motion.

The oscillation frequency depends on two primary fac-
tors, the jet–edge distance, h, and the mean exit velocity
v. The system behaviour is also influenced by a number
of secondary factors, such as the exit velocity profile, the
shape of the nozzle, the sharpness and the transversal posi-
tion of the edge, etc. (Ségoufin et al., 2004). The edge angle,
however, was found to play no role under 40�. The basic
relationship between the frequency f and the above-men-
tioned parameters is:

f ¼ C
v
hn ð1Þ

where C is a constant. (In some papers, there are additive
constants to v or to h but we are concerned here with the
general trends.) About the value of the exponent n there
has been a long debate. In the early phase of the research
rather n = 1 was favoured, (Brown, 1937) later it became
generally accepted that n = 3/2 (Curle, 1953; Holger
et al., 1977; Crighton, 1992). Jones (1942) found a variety
of exponents, all between 1 and 3/2, depending on the stage
Fig. 1. Basic configuration of the edge tone.
number. Recent research (Bamberger et al., 2004) and also
the present paper indicate that n = 1 is more correct.

Some authors report (e.g. Brown, 1937; Nyborg et al.,
1952; Powell, 1961) about a hysteresis phenomenon, mean-
ing that the jump from one stage to another takes place at
another value when increasing the parameter, than when
decreasing it. Other authors do not find such a phenome-
non. The existence of stages is explained by the fact that
between the jet exit and the edge a certain phase relation-
ship must be maintained. Within a parameter region this
can be achieved by adjusting the frequency by keeping
the wavelength approximately constant, over a certain
value, however, the wavelength must be adjusted to a com-
pletely different value. The phase relationship is summa-
rized in the following equation:

h ¼ kðN þ eÞ ð2Þ

where k is the wavelength of the disturbance, N is a whole
number corresponding to the stage number, e is a small
number indicating that the effective resonance length of
the edge tone system is somewhat longer than h, or in other
words the effective point of action of the pressure-induced
force on the edge is ek distance away from the tip. There is
no agreement in the literature about the value of e, it may
also depend on the details of the configuration and on stage
number. The most often occurring value is 1/4 (Curle,
1953). The wavelength can be determined from the fre-
quency of oscillation and the phase speed of the distur-
bance. As we shall see later in the paper there are some
basic difficulties with this concept.

Almost all the authors of experimental studies worked
with fully developed parabolic jet exit velocity profiles.
Exceptions are Krothapalli and Horne (1984) who found
that the top hat exit velocity profile allows the coexistence



Fig. 2. Qualitative appearance of the stages; for all figures h/d = 10;
(a) stage I Re = 225; (b) stage II Re = 350; (c) stage III Re = 1800.
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of several stages at the same time and Ségoufin et al. (2004)
reporting that the oscillation frequencies with a top hat
profile rose by a factor of 1.5 compared to the parabolic
profile.

The first goal of this paper was to reproduce certain
features of the edge tone system known from experimental
work (Brown, 1937; Jones, 1942; Nyborg et al., 1952;
Powell, 1961; Kaykayoglu and Rockwell, 1986a,b) and
from theoretical considerations (Curle, 1953; Holger
et al., 1977; Crighton, 1992) on the basis of detailed and
accurate direct numerical simulations. These include the
existence of and quantitative evaluation of stages, the deter-
mination of disturbance propagation velocity, the pressure
distribution on the wedge surface, the point of force action,
etc. There are two papers known to the authors where
numerical simulations on the edge tone are described (Ohr-
ing, 1986 and Bamberger et al., 2004) but the present work
covers a much wider range of parameters and reaches
broader conclusions.

It has to be mentioned that Howe (1975) used a different
approach to a related problem. He applied his reformula-
tion of Lighthill’s aeroacoustic theory among other exam-
ples to the theory of the flute. The sound production of the
flute profits from the edge tone oscillation but the oscilla-
tion transforms under the presence of the resonator. He
calculated vortex sound sources generated by the edge tone
using a simplified model.

The paper is structured as follows. First the numerical
method for the flow simulation is described. After a satis-
factory level of confidence in the methodology is gained,
the simulation can be used as a tool to perform parametric
studies and to gain new physical insights into the fluid
mechanics of the edge tone.

2. Numerical procedures

2.1. Flow simulation

2.1.1. Flow domain and computational mesh

The geometry and the mesh were generated with the
software ANSYS ICEM.

The domain of the simulation can be seen in Fig. 3. The
geometrical measures are the following: V1 = V2 = H2 =
75 mm; H1 = 12.5 mm; a = 30�; d = 1 mm. The distance
h is varied in the paper; the values will be given later.

The velocity profile was top hat; the jet exit was sharp
edged. Preliminary results indicate that the exit velocity
profile strongly influences the oscillation but the results
with the parabolic profile will be published later. The flow
was assumed to be two-dimensional, and since the software
used is three-dimensional, a one cell thick layer was used
for the simulations. The assumption is justified: all the
experimental studies used a high aspect ratio nozzle and
edge and no three-dimensional effects have been found. A
three-dimensional simulation was also performed and in
the central region the flow proved to be almost perfectly
two-dimensional.



Fig. 3. Solution domain.
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The boundaries were far enough from the region of
interest not to have a disturbing effect on the flow. Our
experience showed that it is advantageous for the flow
development if the back boundary is placed somewhat
behind the nozzle exit (H1); otherwise unphysical vortices
might appear in the flow.

In order to increase the simulation accuracy a block-
structured hexagonal mesh was used (Fig. 4). Extensive
mesh convergence studies have been performed in one
geometry (h = 10 mm and Re = du/m = 200) and in this
case the mesh finally used contained 36,300 hexahedral ele-
ments. Coarser meshes were not satisfactory because cer-
tain important flow structures were not well resolved and
finer meshes were not necessary because the result changed
only negligibly, while the run time increased dramatically.
Increasing the number of cells by a factor of 2.4 the fre-
quency peaks remained exactly the same and the force act-
ing on the edge changed less than 2%.
Fig. 4. Detail of the mesh with block boundaries, h/d = 10.
Here the nozzle exit-wedge tip distance was covered by
32 elements. When the distance h was varied, the number
of elements in this region was increased proportionally.

2.1.2. Boundary conditions, flow and simulation

parameters

On the two planes bordering the 2D slice symmetry
boundary conditions were prescribed. At the solid walls
of the wedge no slip boundary conditions whereas at the
outer nozzle wall free slip conditions were given. At the
back wall a small (about 1% of the exit velocity) inflow
was prescribed. This was done in order to stabilize the flow,
while not influencing the parameters studied. The spectral
peaks appear at the same frequencies but they get sharper.
Without this, experience shows that there is an increased
risk that non-physical vortices appear and remain in the
domain. As mentioned before, at the nozzle exit uniform
velocity distribution was assumed. All other boundaries
were set to opening boundary condition, i.e., prescribed
static pressure with no prescribed flow direction.

Air at 25 �C (q = 1.185 kg/m3, l = 1.831 · 10�5 kg/ms)
was used as the fluid. The flow was assumed to be incom-
pressible and laminar, so that no turbulence model was
needed. Second order accurate spatial and temporal dis-
cretisations were used.

It has been tested to what extent the initial condition
influences the result. To this end simulations with initially
quiescent fluid and initially steady state flow have been per-
formed. It turned out that the initial condition has no influ-
ence on the final character of the flow. No special measures
had to be taken to initiate the oscillation; the oscillation set
in spontaneously after a short transient period.

Great care was taken to determine the optimum tempo-
ral resolution. First, the optimum time step was determined
for a reference case (Re = 200, h/d = 10). For this case sim-
ulations with time steps of 0.05, 0.1, 0.2 and 0.4 ms were
carried out to determine the optimum time step. After care-
ful comparison of the pressure and velocity time signals
and the spectra of these signals at several points it was
found that 0.2 ms is a golden mean between computation
resources and accuracy. The frequency of the oscillation
here is 112 Hz, so this meant about 45 time steps per cycle.
After this, an analytical criterion to keep the error of the
temporal discretisation constant was derived, resulting in
the following equation: the discretisation error remains
constant if

eT T s2Af 3 ¼ const ð3Þ

where s is the time step, f is the expected oscillation fre-
quency, T is the duration of the simulation and A is the
amplitude of the velocity oscillation. The duration of the
simulations T (in simulated time) was mainly determined
by the required frequency resolution of the spectra
(Df = 1/T). Of course, with decreasing time step, it becomes
increasingly difficult to get the same absolute frequency res-
olution in a reasonable time. It was decided that the dura-



Fig. 5. Monitoring points.

Fig. 6. Frequency as a function of Reynolds number.
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tion of the simulation should ensure a frequency resolution
of 1–2% of the expected maximum frequency. Each simula-
tion included also a transient part in the beginning before
the quasi-steady oscillation sets in. This transient part
was omitted from the signal when performing FFT. Fortu-
nately it turned out that the duration of the transient part
decreased linearly with increasing frequency. That means
that the total duration of the simulation could be reduced
inversely proportionally with frequency while keeping a
constant relative frequency resolution. ‘‘A’’, the velocity
oscillation amplitude, on the other hand, increases propor-
tionally with the exit velocity. This leads to the conclusion
that, in order to keep the error constant, the time step has
to be decreased faster than inversely proportionally with
the mean velocity, it has to be proportional with v�3/2.

The details of this derivation are given in Appendix A.
The number of time steps per cycle increases from about
34 at Re = 100 to 272 at Re = 1800.

Pressure and velocity histories were written out in sev-
eral points of the flow field and the frequencies were deter-
mined by means of FFT (using MATLAB). No significant
differences were found in the frequencies whether velocity
or pressure histories were used and whether this or that
point was used.

It has to be mentioned that when a simulation is started
the expected oscillation frequency and thus the required
time step can be estimated by linear extrapolation (Eq.
(1)). When a higher stage appears with a sudden frequency
rise then the simulation has to be repeated with the time
step adjusted accordingly. The memory requirement for
these simulations was rather low because of the small mesh,
but one simulation typically took two days of CPU time
for low Reynolds numbers and up to two weeks for higher
Reynolds numbers on an Intel Pentium 4, 3.2 GHz
machine because of the large number of time steps.

3. Results and discussion

The first remarkable result is that the existence of three
stages has been reproduced by simulation, to the best
knowledge of the authors, for the first time. The qualitative
pictures of the three modes are displayed in Fig. 2a–c. It is
clearly seen that the mode (or stage) order number roughly
corresponds to the number of half-waves between jet exit
and wedge. The periodic vortex shedding can be very nicely
observed in these figures.

Two kinds of systematic parameter studies were
performed:

(i) the h/d value was kept fixed at 10 and the Reynolds
number (Re = dv/m) was varied between 100 and
1800 with larger increments for higher Re values.
(The Reynolds number was changed by changing
the exit velocity);

(ii) the Reynolds number was kept fixed at 350 and the
h/d value was varied (h/d = 3, 4, 5, 6.25, 7.5, 8.75,
10 and 15)
For quantitative analysis of the results several points
were defined to obtain pressure and velocity values from.
Pressure signals were read out from points from the upper
and lower side of the wedge and also from the symmetry
axis between the orifice and the wedge. Transversal velocity
values were read out only from the symmetry axis in the
same points as for the pressure signals (see Fig. 5).

From these signals the dominant frequency components
and their amplitudes were calculated with FFT using Mat-
Lab and also other parameters determined.

The frequency – as expected – does not really depend on
the position of the point. It should be noted that in some –
but not in every – simulations the dominant frequency of
the pressure signal at the symmetry axis is the twice the
oscillation frequency because the pressure is insensitive to
the direction of the jet deflection. Hence the oscillation fre-
quency of the jet was calculated from the pressure signals at
upper and lower side of the wedge or the transversal veloc-
ity signals from the symmetry axis.

3.1. Frequency analysis

In Figs. 6 and 7, the frequency and the Strouhal number
(St = fd/v) is presented as a function of the Reynolds num-
ber, respectively. The error bars in the figures represent the
width of the spectral peak. In many of the points the error
bars cannot be seen because of the size of the markers.



Fig. 7. Strouhal number as a function of Reynolds number.

Fig. 8b. Time history of the pressure in a point on the edge surface for
Re = 600.
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Agreeing well with the literature (e.g. Powell, 1961), it
can be seen, that the frequency is a linear function of the
Reynolds number within one stage but with different slopes
in different stages, and the Strouhal number is nearly con-
stant in each stage. The deviation of the Strouhal number
from constancy, with the exception of the very beginning,
is within the uncertainty of the frequency reading. That is
determined by the frequency resolution of the spectrum
and the width of the spectral peak and stays always within
10% of the peak frequency. One big difference relative to
Powell’s findings is that when the Reynolds number is
increased the first stage does not disappear here but coex-
ists further with the higher stages. Preliminary results with
parabolic inlet profile and also the literature indicate that
this difference is related to the difference between the inlet
profiles. The coexistence of the stages can take place in dif-
ferent ways. At lower Reynolds numbers there is a random
jumping from one pure stage to the other or even more
often, the lower stage is pure, the higher stage is a superpo-
sition of the two signals. At higher Reynolds numbers the
various stages are superposed to each other without jump-
Fig. 8a. Time history of the pressure in a point on the edge surface for
Re = 250.
ing. When two or three stages are superposed (which are
not harmonically related to each other), the motion
becomes very complicated and is not periodic. Examples
for the two kinds of behaviour are shown in Figs. 8a and
8b.

For the investigation of the h-dependence the Reynolds
number was kept constant at 350. For h/d = 3 there was no
edge tone activity, the flow remained steady. The first stage
of the edge tone appeared at h/d = 4 and till h/d = 7.5 only
the first stage was present. From h/d = 7.5 the second mode
appeared but the first mode was still present. For the h/
d = 15 case only the second mode evolved.

From the results of the simulations with Re = 350 it was
found out that the relationship between the oscillation fre-
quency and the nozzle-wedge distance not the recently gen-
erally accepted relationship f � h�3/2 but f � h�1. A similar
result was reported recently by Bamberger et al. (2004).
For both stages, the result was similar (Figs. 9a and 9b).
Simulations for other Reynolds numbers confirmed this
relationship.
Fig. 9a. h-dependence of the frequency, Re = 350, Stage I.



Fig. 9b. h-dependence of the frequency, Re = 350, Stage II.

Fig. 10. Amplitude of the various stages in the pressure signal at the point
indicated with a circle in Fig. 7.
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For comparison a best fit h�3/2 curve was included to
show to what extent this relationship is incorrect.

In Fig. 10, the amplitude of the various stages is plotted
against the Reynolds number. In the range of the investi-
gated Reynolds numbers basically the amplitudes of all
stages increase showing no sign that one of the lower stages
is bound to disappear. Also, contrary to the expectations,
the lower stages continue to dominate at higher Reynolds
Fig. 11. Pressure distribution along the wedge surface.
number. Even higher Reynolds numbers will be investi-
gated whether this trend changes.

3.2. Pressure distribution on the wedge and location

of force action

In Fig. 11 the rms pressure distribution along the wedge
can be seen. All Reynolds numbers display a similar distri-
bution except for the magnitude of the pressure. The sharp
peak in the immediate vicinity of the wedge tip is followed
by gradual drop, a second, flatter peak, and finally a slowly
decreasing long region. The distribution is basically similar
to that of Kaykayoglu and Rockwell (1986a), found exper-
imentally. Kaykayoglou and Rockwell found that after a
medium value the pressure reaches a sharp maximum close
to the wedge tip and afterwards the pressure decreases
roughly as �x�1/2. They measured the pressure only in a
few points. The basic features are reproduced here with
the sharp peak close to the edge tip. Since our spatial res-
olution is higher, more details can be seen in Fig. 11 than
in Kaykayoglu and Rockwell (1986a). The distribution
can be represented rather with a piecewise linear than with
a power function. Another difference is that there the total
streamwise length of the wedge was 0.8 h, whereas here
much longer, 7.5 h. Since the pressure is non-negligible
along almost the whole length of the wedge, the point of
force action (xF) is much more behind the tip in our case
than in theirs.

This point has an importance because this point should
indicate the effective location of the acoustic dipole.

The mean xF is calculated as

�xF ¼
M zrms

F yrms

ð4Þ

(Both the torque and the force are meant per unit length.)
The instantaneous value of xF is calculated with the instan-
taneous values of the torque and the force.

For comparison: Kaykayoglou and Rockwell found
roughly �xF=h ¼ 1=4 whereas here it is 1.6–2 measured from
the tip. The temporal history of xF is shown in Fig. 12 and
we can see that the point of force action remains in a nar-
row range most of the cycle. Every half cycle we see singu-
larities that are physically not realistic; they indicate that
the y component of the force gets zero twice in a cycle.
Fig. 12. Point of force action varying in time; h/d = 10, Re = 350.
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The location of �xF is remarkably stable both as a func-
tion of the Reynolds number and of h (lies always between
16 and 20 mm from the tip). That means that the location
of the effective sound source is largely independent of the
details of the flow as long as the wedge geometry is
unchanged. So the dimensionless form of �xF is not
constant.

If we take a look at the time-resolved distribution of
pressure along the wedge surface (not shown here), we
see a regular wave pattern running along the wedge over
the period but with the same characteristic peak at each
instant near the tip.

In Fig. 13, the two components of the force per unit
length can be seen as a function of the inlet velocity. The
force is calculated by integrating the static pressure over
the whole wedge surface. The dependence is perfectly par-
abolic for both components. This can be explained in the
following way. The force is proportional with the dynamic
pressure on the surface; this is proportional with the square
of the velocity perpendicular to the wedge surface. This
again must be proportional with the inlet velocity. This
leads to the conclusion that the transversal velocity ampli-
tude averaged in some sense increases proportionally with
the inlet velocity.

3.3. Disturbance propagation velocity and wavelength
of the disturbance

It is crucial in the understanding of the exact mechanism
of the edge tone oscillation to determine the velocity of the
disturbance along the jet. In the literature a theoretical
value of 0.5 times the mean exit velocity is given (Mattingly
and Criminale, 1971). The theory is with an assumption of
an inviscid parallel jet and corresponds to the phase veloc-
ity of the most unstable frequency disturbance. Experimen-
tal values scatter around 0.4 times the mean exit velocity
(e.g. Ségoufin et al., 2004). The expression ‘‘phase velocity’’
Fig. 13. Force per unit length on the upper wedge surface as a function of
inlet velocity; h/d = 10.
is meaningful only if there is only one mode present; when
several modes are superposed on each other, each mode
might propagate with a different velocity or the various
modes might interact with each other in an unknown
way. If in multimode operation a disturbance propagation
velocity can be identified then it is not a phase velocity; or,
alternatively the phase velocity can be determined for each
mode separately. Here only the single mode case will be
considered. The disturbance velocity was determined with
three different techniques; two different correlation tech-
niques and one using the phase spectrum from the FFT.
There will be later a complete publication dedicated to
the question of the disturbance propagation velocity; the
techniques will be described there in detail. All three meth-
ods give very similar results, the most reliable and simple
being the third one so that the results presented here are
based on that. The phase for signals of the pressure, the
streamwise and the transversal velocity on the jet centreline
are presented in Fig. 14 for two different Reynolds num-
bers. The absolute numbers on the vertical axis are not
important; the starting points of the three curves were
adjusted in an arbitrary manner to 0, 1 and 2, respectively.
The relative phase from the starting point is to be observed.
The reciprocal of the derivative in each point multiplied
with the angular frequency yields the phase velocity. It is
demonstrated in Fig. 14 that these curves are universal in
the sense that they apply for every first stage single-mode
Reynolds number (It has been tried for many more cases
than presented.) The first and the last mms of the curves
are cut off; in the first mm the disturbance is not yet enough
developed and on the last mm the edge influence is too
strong.

In spite of the appearance in the figure the total phase
delay of the pressure and the streamwise velocity over the
whole distance is the same. The apparent frequency of
these two variables is the twice the fundamental since they
have no sign. The frequency of the transversal velocity is
Fig. 14. Relative phase of signals of various variables along the jet axis for
two different Reynolds numbers; h/d = 10; single mode operation.
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the fundamental thus total phase delay is expected to be
half of that of the previous signals. Instead, it is somewhat
more than that and we have no explanation for this. The
phase velocities are very high (more than v) at the orifice
and they continuously and rapidly decrease further down-
stream to values of 0.5–0.6v for the transversal velocity sig-
nal, and to 0.35–0.5v for the other two signals. This latter
agrees well with the value found by Ségoufin et al. (2004)
but it is also not far from the theoretical value of Mattingly
and Criminale (1971). The initially high velocities can be
explained so that the disturbances have not developed there
yet – instead the jet moves rather like a ‘‘solid stick’’. Since
there is a continuous change of the phase velocity it makes
no sense to talk about ‘‘wavelength’’ in the traditional
sense of the word since within one wavelength the ‘‘wave-
length’’ changes. A further discussion of this subject fol-
lows in another publication. Preliminary results for
multimode operation show that the propagation velocity
of each mode separately stays in this region of 0.35–0.5 v

most of the distance.
Fig. 15. Development of the higher harmonics along the axial coordinate.
Re = 200, h = 10 mm. (a) pressure; (b) streamwise velocity; (c) transversal
velocity.
3.4. Development of higher harmonics

The development of higher harmonics can be ana-
lyzed only at lower Reynolds numbers or lower h values.
The reason for this is that with increasing Re or h when
the higher modes appear their spectral peak becomes
increasingly broader and it becomes very difficult to distin-
guish the higher harmonics of lower modes from higher
modes.

Fig. 15 shows the development of the various harmonics
at a moderate Reynolds number on the centerline. The
shape of the functions is the same for all single-mode Rey-
nolds numbers. In the case of the pressure and the stream-
wise velocity there is a typical exponential-type rise in the
amplitude for all harmonics in the beginning indicating
the linear region of disturbance growth and then the satu-
ration region and a decrease. The maximum is for both
variables at 8 mm, which is 80% of the orifice–edge tip dis-
tance. This remains true also for other h values. The last
point at the tip of the edge in the case of the pressure is
much higher but that can be considered as a singularity
because of the stagnation point at the sharp edge. For these
two variables, it is not surprising that the first overtone
dominates; neither of these variables can distinguish
between up and down because of the symmetry, so that
the apparent oscillation frequency is twice the fundamen-
tal. The transversal velocity (Fig. 15c) behaves differently.
In line with the expectations the dominant mode is the fun-
damental since here the direction of the motion is resolved.
However, the shape of the function is different. There is a
linear rise at the beginning, a short constant region and
then a much sharper rise in the fundamental and a slight
decrease in the higher harmonics. The second harmonic is
higher than the first which can again be explained by the
symmetry of the geometry. The reason for the sharp rise
near the edge is the acceleration of fluid between the vortex
near the edge and the edge. We have nevertheless at present
no satisfactory explanation why the different variables dis-
play a different shape. The shape is no coincidence; it
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looks the same for other Reynolds numbers and for other
h-s.
4. Conclusions and outlook

Detailed high precision numerical flow simulations have
been performed on the edge tone. The existence of the first
three stages has been reproduced by numerical simulation
for the first time to the best knowledge of the authors. The
Reynolds number dependence of the frequencies corre-
sponds to the expectations, whereas the dependence on
the jet exit-wedge tip distance was proved to have an expo-
nent of �1 instead of a long-accepted �3/2. The lower
stages do not disappear at higher Reynolds numbers
within the investigated Reynolds number range. The coex-
istence of different modes takes place by jumping in and
out of the lower mode at lower Reynolds numbers and
by superposition of the two or three modes at higher Rey-
nolds numbers. Even in the presence of the higher stages
the first stage has the highest energy content. The qualita-
tive shape of the pressure distribution along the wedge has
proved to be similar to the experimental results of Kay-
kayoglu and Rockwell (1986) but due to the better resolu-
tion and accuracy it has been shown that the point of force
action is significantly further behind the wedge tip than
stated by them. This location, however, is more or less
independent of both the Reynolds number and the nozzle
exit-wedge distance. The mean force on the wedge surface
increases quadratically with the exit velocity. Phase veloc-
ities of the disturbance propagating along the wedge have
been determined. In the initial part the phase velocity was
high, in the order of the exit velocity, later the velocity slo-
wed down to values of around 0.4 times the exit velocity.
The amplitudes of all harmonics showed a characteristic
initial exponential rise, saturation, marked by a maximum
and a decrease for the pressure and for the streamwise
velocity and a different shape for the transversal velocity.
Whereas in the former two variables the first harmonic
dominates, in the third one the fundamental dominates,
easily explainable with symmetry considerations.

Plans in the near future:

• Further parameter studies including detailed simulations
with parabolic inlet profile, different nozzle or edge
geometry.

• Mapping of the parameter space of the onset of oscilla-
tion and the appearance of higher stages.

• Extending the simulations to the turbulent regime.
• A comparative study of the various definitions of the

disturbance propagation velocity.
• Theoretical modelling.
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Appendix A

It is well known that the main source of the error in the
numerical solution of a time-dependent partial differential
equation is the accumulated error of the discretised time
derivatives over many time steps. ANSYS CFX uses the
‘‘Second Order Backward Euler’’ time discretisation
scheme. In this Appendix, a conservative estimate for the
time discretisation error of this scheme will be given
(Stoyan and Takó, 1995).

As a first step, let us analyze this scheme via the numer-
ical solution of an ordinary differential equation (thereby
assuming that the error from the spatial derivatives
remains constant):

oy
ot
¼ f ðt; yðtÞÞ

yð0Þ ¼ y0

where f is Lipschitz continuous with a Lipschitz constant
Lf.

Using the following discretisation:
t0 ¼ 0; tjþ1 ¼ tj þ s; j ¼ 1; 2; . . .

y0 ¼ yð0Þ;
Let s be small enough to satisfy the following criterion:
3

2
� sLf P

1

c

where c > 0 is a constant.
The ‘‘Second Order Backward Euler’’ differentiation

scheme takes the following form:

oy
ot
ðtjÞ �

1

s
3

2
yðtjÞ � 2yðtj�1Þ þ

1

2
yðtj�2Þ

� �
� f ðtj; yðtjÞÞ ðA:1Þ

The exact values y(tj) are approximated by the numerical
values yj;

So the algebraic equation to be solved is the following:

1

s
3

2
yj � 2yj�1 þ

1

2
yj�2

� �
¼ f ðtj; yjÞ ðA:2Þ

where yj�1 and yj�2 are known from the previous time steps
and yj is to be determined.

The local error (gj) of this discretisation is the difference
of the two sides of (A.1):
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gj :¼ gðtj; sÞ ¼
1

s
3

2
yðtjÞ � 2yðtj�1Þ þ

1

2
yðtj�2Þ

� �
� f ðtj; yðtjÞÞ

¼ 1

s
3

2
yðtjÞ � 2 yðtjÞ � s

oy
ot
ðtjÞ

��

þ s2

2

o2y
ot2
ðtjÞ �

s3

6

o3y
ot3
ðtjÞ þ Oðs4Þ

�

þ 1

2
yðtjÞ � 2s

oy
ot
ðtjÞ þ

4s2

2

o2y
ot2
ðtjÞ �

8s3

6

o3y
ot3
ðtjÞ þ Oðs4Þ

� ��
� f ðtj; yðtjÞÞ

¼ 1

s
s
oy
ot
ðtjÞ �

s3

3

o3y
ot3
ðtjÞ þ Oðs4Þ

� �
� f ðtj; yðtjÞÞ

¼ � s2

3

o3y
ot3
ðtjÞ þ Oðs3Þ ðA:3Þ

subtracting (A.2) from (A.3) we obtain:

1

s
3

2
ej � 2ej�1 þ

1

2
ej�2

� �
¼ f ðtj; yðtjÞÞ � f ðtj; yjÞ þ gj

ðA:4Þ
where

ej ¼ yðtjÞ � yj

With the notation

/j ¼
f ðtj; yðtjÞÞ � f ðtj; yjÞ

yðtjÞ � yj

(A.4) transforms into

3

2
ej ¼ 2ej�1 �

1

2
ej�2

þ s
f ðtj; yðtjÞÞ � f ðtj; yjÞ

yðtjÞ � yj

ðyðtjÞ � yjÞ þ sgj

ej
3

2
� s/j

� �
¼ 2ej�1 �

1

2
ej�2 þ sgj

ðA:5Þ

The following transformations

2
3
2
� s/j

¼ 2
3
2

þ s
2/j

3
2

3
2
� s/j

� � ¼ 4

3
þ

4s/j

3 3
2
� s/j

� �
1
2

3
2
� s/j

¼
1
2
3
2

þ s
1
2
/j

3
2

3
2
� s/j

� � ¼ 1

3
þ

s/j

3 3
2
� s/j

� �
yield:

ej ¼
4

3
þ

4s/j

3 3
2
� s/j

� �
 !

ej�1 �
1

3
þ

s/j

3 3
2
� s/j

� �
 !

ej�2

þ s
3
2
� s/j

gj

ej ¼
4

3
ej�1 �

1

3
ej�2 þ

s
3
2
� s/j

4

3
/jej�1 �

1

3
/jej�2 þ gj

� �

The following notations are introduced:

ej ¼
ej�1

ej

� �
; A ¼

0 1

� 1
3

4
3

 !
;

Bj ¼
0 0

� 1
3
/j

1
3
2�s/j

4
3
/j

1
3
2�s/j

 !
; vj ¼

0
1

3
2�s/j

gj

 !
Then the equation in a matrix notation becomes:

ej ¼ Aej�1 þ sBjej�1 þ svj ðA:6Þ

Let S be a matrix with which SAS�1 is the Jordan normal
form of A:

S ¼
� 1

2
3
2

� 1
2

1
2

 !
; SAS�1 ¼

1 0

0 1
3

 !
) kSAS�1k1 ¼ 1

where kPk1 :¼ maxi
P

jjpijj.
After multiplying both sides of (A.6) from the left side

by S and with the S�1S = I we get:

Sej ¼ SAS�1Sej�1 þ sSBjS
�1Sej�1 þ sSvj

With the usual inequalities for norms:

kejkS 6 kSAS�1k1kej�1kS þ skSk1kBjk1kS�1k1kej�1kS

þ skSk1kvjk1
kejkS 6 kej�1kS þ s2kBjk14kej�1kS þ s2kvjk1
kejkS :¼ kSejk1

kBjk1 ¼ j/jj
1

3
2
� s/j

�����
����� 1

3
þ 4

3

� �
6 Lf

1
3
2
� s/j

�����
����� 53 6 5

3
Lf

1
3
2
� sLf

kvjk1 ¼
1

3
2
� s/j

gj

�����
����� 6 1

3
2
� sLf

gj

Hence:

kejkS 6 kej�1kS þ 8s
5

3
Lf

1
3
2
� sLf

kej�1kS þ 2s
1

3
2
� sLf

jgjj

Since

3

2
� sLf P

1

c

kejkS 6 1þ 40

3
sLf c

� �
kej�1kS þ 2scjgjj

6 1þ 40

3
sLfc

� �j

ke0kS þ 2sc
Xj

k¼1

jgjk 1þ 40

3
sLf c

� �j�k

6 1þ 40

3
sLfc

� �j

ke0kS þ 2sc
Xj

k¼1

jgjk

 !

6 e
40
3 sjLf c ke0kS þ 2sc

Xj

k¼1

jgjk

 !

w :¼ Sv

kvkS ¼ kwk1 6 kSk1kvk1 ¼ 2kvk1
kvk1 ¼ kS�1wk1 6 kS�1k1kwk1 ¼ 4kwk1
1

4
kvk1 6 kvkS 6 2kvk1
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So:

1

4
kejk1 6 kejkS 6 e

40
3 sjLf c 2ke0k1 þ 2sc

Xj

k¼1

jgjk

 !

kejk1 6 8e
40
3 sjLf c ke0k1 þ sc

Xj

k¼1

jgjk

 !

Where

kejk ¼ maxðjej�1j; jejjÞ ) jejj 6 kejk1
Let us assume that the initial values are correct and the
initial error ke0k1 is zero, so:

jejj 6 8e
40
3 sjLf c sc

Xj

k¼1

jgkj
 !

From (A.3):

gj ¼ �
s2

3

o3y
ot3
ðtjÞ þ Oðs3Þ ) jgjj 6

s2

3
max

o3y
ot3

����
����þ Oðs3Þ

So if T = Ns, at the end of the simulation the global error
will be:

jeN j 6 8e
40
3 TLf cscN

s2

3
max

o3y
ot3

����
����þ Oðs3Þ

� �

¼ 8e
40
3 TLf cTc

s2

3
max

o
3y

ot3

����
����þ Oðs3Þ

jeN j 6 consteT T s2 max
o3y
ot3

����
����þ Oðs3Þ

where const is a constant, independently of the time step.
If we assume that the flow velocity at a fixed spatial

point is a harmonic function of time, Asin(ft), the maxi-
mum of the absolute value of the third derivative can be
approximated with Af 3. The global error of the simulation
after the last time step can be estimated as:

jeN j 6 consteT T s2Af 3 þ Oðs3Þ ðA:7Þ
For our reference case, Re = 200 a certain optimum time
step was determined. Our task is to keep the same error
at other Reynolds numbers either.

The frequency of oscillation is proportional with the
mean exit velocity (v) of the jet in each stage. The duration
of both the transient and the quasi-steady parts of the sim-
ulation is inversely proportional with the frequency (to
keep the relative frequency resolution of the spectrum con-
stant) and thus with v.

The amplitude A of the velocity oscillation is also pro-
portional with the mean velocity v (see explanation to
Fig. 13). Finally, the exponential factor can be ignored
since then we are on the conservative side. This factor
decreases anyway with increasing velocity and tends to 1.
Putting all the information together, the error is kept con-
stant if s is decreased according to

s / v�
3
2 ðA:8Þ

So the time step has to be decreased stronger than inversely
proportionally with the velocity to keep the error constant.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.ijheatfluidflow.2007.04.011.
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